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Cyanobacterial blooms are increasingly posing a severe threat to inlandwaters, particularly at the land-sea inter-
facewhere toxins can be transported downstreamwith subsequent impacts to both terrestrial andmarine organ-
isms. These blooms are relatively easy to detect optically because of the surface concentration of cells, the
presence of phycocyanin pigments, and the elevated backscatter associated with cell size and the presence of
gas vacuoles. Major challenges limiting the use of remote sensing have been, first, thatmany of these water bod-
ies are small relative to the spatial resolution of ocean color satellites, and second, evenwith a bright algal target,
the spectral resolution, signal-to-noise ratio, and repeat time for terrestrial satellites is often inadequate. The next
generation of multispectral and hyperspectral sensors begin to address these issues with both increased spatial
and spectral resolution. Weekly monitoring of Pinto Lake, California has demonstrated that this small water
body provides an ideal testbed for development and application of algorithms applicable for legacy and next-
generation sensors. Pinto Lake experiences seasonal nearly monospecific bloomswith a pronounced species suc-
cession. Biomass (as chlorophyll) within Pinto Lake seasonally ranges from ~1 to 1000 μg/L. Pinto Lake has been
within the flight lines for several recent airborne missions, including the HyspIRI Preparatory Flight Campaign,
and is often targeted for HICO acquisitions. Using these data we demonstrate that spectral-shape algorithms re-
quiring minimal atmospheric correction can be used across a range of legacy sensors to detect cyanobacterial
blooms and that, with the availability of high spectral resolution data and appropriate atmospheric correction,
it is possible to separate the cyanobacterial genera Aphanizomenon andMicrocystis. In California Aphanizomenon
is typically non-toxic and blooms prior to toxin-producing Microcystis, thus leading to the potential for an early
warning system based on the identification of algal types.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In California, there is increasing evidence that freshwater
cyanobacteria (blue-green algae) are a growing problem in lakes and
rivers.Microcystis aeruginosa in particular is considered a cyanobacterial
harmful algal bloom (CyanoHAB) organism because it can impede rec-
reational use of waterbodies, reduce esthetics, lower dissolved oxygen
concentration, and cause taste and odor problems in drinking water,
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as well as produce microcystins, powerful hepatotoxins associated
with liver cancer and tumors in humans and wildlife (Carmichael,
2001). ExtensiveMicrocystis bloomswith toxin production occur during
summer and fall in impaired waterways in Washington, Oregon and
California (Gilroy, Kauffman, & Hall, 2000; Johnston & Jacoby, 2003)
andMicrocystis contamination has been documented at themarine out-
flows of the Klamath and San Francisco estuaries (Fetcho, 2007;
Lehman, Boyer, Hall, Waller, & Gerhrts, 2005) as well as from river in-
puts to Monterey Bay (Gibble & Kudela, 2014; Miller et al., 2010). The
direct impact to the threatened California Sea Otter (Enhydra lutris)
has promoted these blooms and toxins from predominantly a freshwa-
ter issue to potentially a land–sea problem, with concomitant risk be-
cause of the lack of monitoring in brackish and marine waters (Miller
et al., 2010). Other common bloom-forming pelagic cyanobacteria
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include Aphanizomenon, Anabaena, and (less common, but present, in
California) Lyngbya (Kurobe et al., 2013); however, since toxicity is pri-
marily associatedwithMicrocystis, these other CyanoHABs are generally
considered nuisance blooms rather than acutely dangerous to humans
and wildlife (Backer et al., 2010; Kudela, 2011; Lehman, Marr, Boyer,
Acuna, & Teh, 2013).

Both toxigenic (capable of producing toxin) and non-toxic strains
ofMicrocystis are present in California (Baxa, Kurobe, Ger, Lehman, &
The, 2010; Lehman et al., 2013;Moisander, Lehman, Ochiai, & Corum,
2009).M. aeruginosa bloom formation and consequent toxin genera-
tion is influenced by environmental variables such as high nutrient
supply, elevated light levels, and warm temperatures (Davis, Berry,
Boyer, & Gobler, 2009; Jacoby, Collier, Welch, Hardy, & Crayton,
2000; Paerl & Huisman, 2008; Paerl & Otten, 2013; Tsuji et al.,
1994; Welker & Steinburg, 2000; Zehnder & Gorham, 1960). The
prevalence of CyanoHABs and subsequent toxic events may be intensi-
fied by a warming climate in tandem with increases in environmental
degradation and eutrophication (Davis et al., 2009; Guo, 2007; Kudela,
2011; O'Neil, Davis, Burford, & Gobler, 2012; Paerl & Huisman, 2008;
Welker & Steinburg, 2000; Zehnder & Gorham, 1960).

While toxin events are primarily associated with M. aeruginosa,
other potentially toxic genera, including Aphanizomenon, Anabaena,
and Planktothrix are frequently present in impacted water bodies
(Kudela, 2011). These genera often produce dense surface blooms
(Lehman et al., 2013; Paerl, 2008; Sellner, 1997), making satellite detec-
tion of potentially harmful cyanobacterial blooms possible (e.g. Kahru,
1997; Simis, Peters, & Gons, 2005, Simis et al., 2007; Vincent et al.,
2004; Wynne et al., 2008). One issue with these methods is that not
all cyanobacterial genera are toxic, nor is toxin always produced by toxi-
genic species. Thus while it is possible to identify potential CyanoHABs,
it is desirable to separate potentially toxic and non-toxic blooms.

Many of the optical detection methods for identification of
cyanobacterial blooms rely on algorithms targeting phycocyanin
(reviewed by Kutser, 2009 and Ogashawara, Misra, Mishra,
Curtarelli, & Stech, 2013), a characteristic pigment associated with
freshwater cyanobacteria. Phycocyanin is a pigment-protein com-
plex with a broad absorption feature at ~620 nm, often detected
from remote sensing data using a wavelength range of 615–630 nm
(Ogashawara et al., 2013). Potential issues with these approaches in-
clude the necessity to acquire data at sufficiently fine enough spatial
and spectral resolution to identify the phycocyanin absorption feature
in remote sensed data, the sensitivity to poor remote sensing data due
to (for example) inadequate atmospheric correction (Wynne, Stumpf,
Tomlinson, & Dyble, 2010), and the lack of a “universal” algorithm ap-
plicable to all sensors (Kutser, 2009).

One approach that avoids issues with atmospheric correction and
is more easily extensible tomultiple sensors involves the use of spec-
tral shape, rather than identification of specific absorption features.
In particular, Wynne et al. (2008, 2010) demonstrated that spectral
shape (or the second derivative of the remote sensing reflectance
spectrum) is insensitive to atmospheric correction when applied to
surface-intensified blooms of cyanobacteria. Those authors devel-
oped a Cyanobacterial Index (CI) that relies on changes in the
shape between 665, 681, and 709 nm caused by the strong scattering
by cyanobacteria at around 709 nm (c.f. Wynne et al., 2008). The CI
has been successfully applied to the detection of blooms in the
Laurentian Great Lakes using the Medium Resolution Imaging Spec-
trometer (MERIS; Wynne et al., 2008), and later in conjunction
with other environmental data such as wind speed (Wynne et al.,
2010). A similar spectral shape approach was taken by Matthews,
Bernard, and Robertson (2012). Those authors developed the Maxi-
mum Peak Height (MPH) algorithm and applied MPH to inland and
coastal waters in South Africa with MERIS data. More recently, an-
other generalization of spectral shape algorithms resulted in the
Adaptive Reflectance Peak Height (ARPH) algorithm, applied to
coastal waters of Monterey Bay, California, using the Hyperspectral
Imager for the Coastal Ocean (HICO) by Ryan, Davis, Tufillaro,
Kudela, and Gao (2014). All of these algorithms employ spectral
shape and demonstrate reduced sensitivity to noisy data, such that
they can even be applied to top-of-atmosphere radiances, a method
pioneered by Gower, Doerffer, and Borstad (1999) in the develop-
ment of the Maximum Chlorophyll Index (MCI) for MERIS.

Despite advances in development of both semi-analytical phycocya-
nin methods and spectral shape methods (Ogashawara et al., 2013),
remote-sensing methods for detection of cyanobacterial HABs are still
limited by the relative unavailability of sensors with both fine spectral
and spatial resolution. Planned sensors such as the European Space
Agency's Ocean Land Color Instrument (OLCI) aboard Sentinel-3 and
NASA's Hyperspectral Infrared Imager (HyspIRI) will provide both
greatly improved spectral and spatial resolution, but are not yet avail-
able. This limitation has hindered the application of remote sensing
for routine monitoring and detection of CyanoHABs in California, de-
spite widespread interest by monitoring and management agencies.
To address these issues, and in preparation for the routine availability
of data products from OLCI, HyspIRI, and other sensors, we took advan-
tage of airborne data from the NASA Student Airborne Research Pro-
gram (SARP, 2009 and 2011) and the HyspIRI Airborne Campaign
(2013) collected over central California. Flights routinely imaged Pinto
Lake, a small, hyper-trophic water body located adjacent to Monterey
Bay, California. Pinto Lake is well characterized in terms of CyanoHAB
events (Kudela, 2011) and makes an ideal testbed for development
and testing of remote sensing algorithms. As with other inland waters,
Pinto Lake also exhibits a regular successional pattern with increases
in the (generally non-toxic) organism Aphanizomenon preceding
blooms of the highly toxicMicrocystis aeruginosa. Here we demonstrate
that a two-step approach, first identifying the presence of potential
CyanoHABs, and second, separating Aphanizomenon from Microcystis,
may provide an early-warning capability for detection of potentially
harmful blooms.

2. Materials and methods

2.1. Study area and sampling strategy

The primary study area was Pinto Lake, California (36.95° N,
121.77° W). Pinto Lake is a shallow natural lake located 8.3 km in-
land fromMonterey Bay (Fig. 1). This spring-fed lake has amaximum
depth of ~10 m and covers 37 surface hectares. Pinto Lake includes
parks operated by the City of Watsonville and Santa Cruz County,
and is regularly used for recreational activities including fishing
and boating. Two other water bodies were used as qualitative valida-
tion for the algorithm development. Kelly Lake is immediately adja-
cent to Pinto Lake (36.94° N, 121.74°W). It covers 36 surface hectares
and has amaximumdepth of ~6m. There is no public access, which pre-
cluded routine monitoring. A third water body, Campus Lagoon at the
University of California Santa Barbara (34.40° N, 119.84° W) was also
sampled opportunistically as part of the field effort.

Of the three study areas, Kelly Lake and Campus Lagoon were sam-
pled a single time, and were included as verification sites for the algo-
rithms, which were developed with the more extensive data available
from Pinto Lake. The latter has been sampled approximately weekly
since August 2009. Data include relative cell abundance determined
by microscopy, surface chlorophyll concentration, temperature, and
toxin as both whole-water “grab” samples and integrated toxin using
the Solid Phase Adsorption Toxin Tracking (SPATT) methodology.
While microcystins include more than 90 chemical congeners, the
most common and routinely reported form is microcystin LR (MCY-
LR); we therefore used the concentration of MCY-LR (ppb) in this anal-
ysis. Details of the time-series are provided in Kudela (2011). For part of
the time series phycocyanin was measured by fluorescence using an
Algae Torch (BBE). The fluorescence was converted to equivalent μg/L
concentration using discrete samples that were extracted and analyzed
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Fig. 1. The geographical location of the primary study site, containing Pinto Lake, and Kelly Lake. The greater Monterey Bay, California region is one of the HyspIRI Airborne Campaign re-
gional targets. The inset images provide AVIRIS imagery for 31 October 2013 depicting true-color (top) and the CI (bottom). Sampling occurred at the boat dock, visible in the bottom
middle part of the true-color image.
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by spectrometer (Sampath-Wiley & Neefus, 2007). Other data reported
herein were collected as described by Kudela (2011). As described
therein, phytoplankton taxa were enumerated on a relative abundance
index and reported as not present, rare, common, abundant, or domi-
nant, based on visual examination by microscopy using a Leica MZ12
microscope.
2.2. Field optical data

Remote sensing reflectance (Rrs (λ)), defined as the upwelling ra-
diance emerging from the water body divided by the incident
downwelling irradiance, was determined at Pinto Lake using either
a PANalytical (formerly Analytical Spectral Devices, Boulder, CO)
FieldSpec spectroradiometer equipped with a 7.5° foreoptic, or a
Spectra Vista (Poughkeepsie, NY) GER 1500, both for the selected
wavelength range of 400–800 nm. Radiance data were collected
and processed following the methods described in Lee et al. (1997),
with multiple spectra acquired and averaged for each time point.
Spectra were normalized using a Spectralon (Labsphere, NH) white
(98% albedo) plaque. Spectra corresponding to periods dominated
by Aphanizomenon, Microcystis, mixed assemblages, and non-
CyanoHAB organisms were collected during 2012–2013. For
convenience the wavelength notation is omitted from Rrs for the re-
mainder of the manuscript.

To complement the above-water Rrs data, absorption, scattering, and
backscattering datawere acquired on 10 July 2012 and 26 July 2012, pe-
riods when Microcystis (former) and Aphanizomenon (latter) dominat-
ed. Surface water was collected and transported to the laboratory,
where it was pumped through a WETLabs ac-s spectrometer, then fil-
tered and re-measured to provide total (absorption, am−1, attenuation,
c m−1) and dissolved spectra. A HOBI Labs HS-6 was deployed in the
near surface (coincident with the FieldSpec measurements) to provide
backscatter at six wavelengths. Discrete samples were also collected
for particulate (filter-pad) absorption, colored dissolved organicmateri-
al (CDOM) absorption, and chlorophyll following the methods de-
scribed in Kudela, Garfield, and Bruland (2006). Whatman GF/F filter
(nominally 0.7 μm) were used for pigments and filterpad absorption
measurements. Microcystis and Aphanizomenon are both colonial, with
individual spherical cells 2–3 μm in diameter (Microcystis) and cylindri-
cal cells ~5 × 100 μm (Aphanizomenon). Individual cells are rarely ob-
served, while colonies can be millimeters in diameter, often forming
dense surface mats or scums under bloom conditions.

Field data were generally collected from a single location or a small
range of locations at the southern end of Pinto Lake (Fig. 1). In contrast,
the spatial resolution of the airborne and satellite imagery results in
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spatial averaging over a much larger region (tens to hundreds of me-
ters). This mismatch is somewhat mitigated by the small size of Pinto
Lake; during blooms, the water was generally homogenous over hun-
dreds ofmeters, based on discrete samples collected atmultiple sites in-
cluding the boat dock, lake shore, and earthen berms extending into the
lake (for example 13 September 2012, Table 1, where all parameters
from multiple sites were available and were included in the analysis).
However, field sampling was not comprehensive and we did not fully
characterize spatial homogeneity across the lake, which does introduce
pixel-to-pixel variability in the remote sensing imagery.

2.3. Remote sensing data

Radiometric data were collected using the MODIS/ASTER Airborne
Simulator (MASTER). MASTER is an airborne sensor with fine spatial
resolution (10–60m, depending onflight elevation) but limited spectral
bands (Table 2). MASTER data were acquired as part of SARP on 22 July
2009 and 30 June 2011 with a ground sample resolution (GSR) of
~20 m. MASTER data were collected as part of the HyspIRI Airborne
Campaign on 10 April 2013 and 31 October 2013 at 50 m GSR. Data
were atmospherically corrected using the Fast Line-of-sightAtmospher-
ic Analysis of Hypercubes (FLAASH) module provided as part of ENVI
(Exelis, Boulder, CO). Imagery from the Hyperspectral Imager for the
Coastal Ocean (HICO; Table 2)were obtained fromOregon State Univer-
sity as L2 (atmospherically corrected, 100 m GSR at nadir) using the
beta processing software implementation of Tafkaa (Gao, Montes,
Ahmad, & Davis, 2000) provided by Oregon State University. No optimi-
zation was performed; Tafkaa runs were carried out using an aerosol
optical depth (550 nm) of 0.1, and an ozone value of 0.270 ppm.

2.4. Hydrolight simulations

Remote sensing reflectance spectra (Rrs; sr−1) were simulated
using the Hydrolight 4.0 (Sequoia Scientific) radiative transfer
model (Mobley, 1995) to calculate end-member reflectance for
Aphanizomenon and Microcystis blooms, and to explore algorithm
sensitivity to inherent optical properties. User-supplied absorption
(a, m−1) and attenuation (c, m−1) were obtained from the ac-s data.
Table 1
A summary of the environmental conditions associated with each sampling event
depicted in Figs. 3 and 5 for Pinto Lake, CA. Thenumbers/letters following thedate indicate
the spectra annotations in Fig. 5.

Date Chlorophyll a (μg/L) Phycocyanin (μg/L) Microcystin LR (ppb)

Above-water spectra
2-Jun-12 (1) 437.06 74.70 0.63
10-Jul-12 (2) 18.00 38.70 0.33
26-Jul-12 (3) 92.20 38.30 64.31
29-Jul-12 (4) 350.70 43.10 1.81
5-Aug-12 (5) 252.00 30.40 5.54
13-Sep-12 (6) 56.46 29.50 0.00
13-Sep-12 (6) 42.44 35.50 0.00
13-Sep-12 (6) 53.19 40.70 0.00
17-Oct-12 (7) 2253.07 156.70 48.85
3-Apr-13 (8) 118.07 60.30 0.00
10-Apr-13 (9) 72.33 44.40 0.00
31-Oct-13 (10) 94.08 48.90 1.20
5-Dec-13 (11) 10.58 12.80 11.74

HICO
17-Nov-10 (a) 726.60 28.10 10.28
3-May-11 (b) 23.39 0.00 0.10
12-Sep-11 (c) 108.27 86.80 2.56
26-Oct-11 (d) 474.60 162.90 19.31
9-Nov-11 (e) 680.00 261.50 6.43
15-Jun-12 (f) 8.65 12.10 0.10
20-Aug-12 (g) 22.81 3.70 0.64
27-Aug-12 (h) 27.71 5.90 0.10
6-Nov-12 (i) 2609.25 38.70 4.00
A pure-water phase function was chosen, with fluorescence from chlo-
rophyll and CDOM, and Raman scattering. CDOM absorption was set to
a constant value of 0.1 m−1 with an exponential decay function and
gamma value of 0.014, while chlorophyll absorption was wavelength-
specific, using Morel (1998). Model wavelengths from 400 to 785 nm
(10 nm intervals) was chosen with infinite depth at 0.5 m steps to
1.5 m. Sky conditions were set to a solar zenith-angle of 10°, 0% cloud
cover, no wind, and default sky conditions based on RADTRAN. While
themodeled solar zenith angle is not typical for HICO (which is typically
~45°), the Hydrolight runs were used primarily to test the sensitivity to
changes in chlorophyll concentration and backscatter ratio. An array of
model runs was performed, varying the backscatter ratio from 0.001 to
0.0150 and varying chlorophyll from 5 to 20 mg m−3.

2.5. Algorithm development

We employed a suite of algorithms for characterization of
cyanobacterial biomass and separation of Aphanizomenon and
Microcystis from remote sensing reflectance data. These included the
Cyanobacteria Index, CI (Wynne et al., 2008, 2010), and several
empirically-derived spectral shape algorithms derived from observed
data and Hydrolight runs. These algorithms were applied to MASTER
and HICO data to assess applicability and are provided in Table 3 and
Fig. 2. Following the convention ofWynne et al. (2008, 2010)we define
a spectral shape algorithm using MASTER bands 654 nm, 714 nm, and
754 nm to estimate the Scattering Line Height (SLH), and a set of spec-
tral shape algorithms for distinguishing Aphanizomenon versus
Microcystis as the Aphanizomenon-Microcystis Index (AMI) as described
in Table 3.

The AMI was developed by empirical comparison of various spectral
shape parameters using known spectra from field samples. Samples
varied from nearly 100% Microcystis to nearly 100% Aphanizomenon.
For the AMI, spectra were first normalized by setting the maximum
peak height between 700 and 720 nm to unity. CI and SLHwere applied
without normalization of the Rrs spectra. Therewas no a priori reason for
selecting the subset of bands and spectral shapes used, although
selection was guided by documented optical characteristics such as
the known influence of phycocyanin absorption and cell scattering
(e.g. Ogashawara et al., 2013; Wynne et al., 2008). In the development
of SLH and AMI, other possible band and spectral shape combinations
were tested by comparing results to Hydrolight and above-water spec-
tra. The final (AMI, SLH) algorithms were chosen based on comparison
to field data by maximizing the r2 value between the indices and mea-
sured properties (phycocyanin, relative abundance of cyanobacterial
genera) using linear regression.

3. Results

3.1. Environmental overview of field sites

Pinto Lake, California exhibits strong seasonality in ecological and
bio-optical properties (Kudela, 2011; Table 1; Fig. 3). This hyper-
eutrophic lake frequently exhibits toxin concentrations vastly
exceeding California Office of Environmental Health Hazard Assess-
ment (OEHHA) recommended alert levels of 0.8 ppb total microcystin
(Butler, Carlisle, & Linville, 2012). Similar to other systems (Lehman,
McDonald, & Lehman, 2009; McDonald & Lehman, 2013), dominance
by Aphanizomenon spp. generally preceded Microcystis aeruginosa, pre-
sumably due to a combination of water chemistry (Aphanizomenon is
capable of fixing atmospheric nitrogen, whileMicrocystis does not pos-
sess this capability; Lehman et al., 2009) and temperature (Paerl, Hall, &
Calandrino, 2011). Within Pinto Lake, toxin-production is also associat-
ed withMicrocystis, while blooms of cyanobacteria including Anabaena
spp. and Aphanizomenon flos-aquae are not associated with production
of microcystins (Kudela, 2011). Relevant to this study, microcystins
were detected in both Kelly Lake and the UCSB Lagoon during



Table 2
Characteristics of current and future sensors relevant to studies of inland waters.

Sensor Wavelength Bands IFOV Swath width GSR Reference

MASTER 0.4–13.0 μm 50 2.5 mrad 14.3 km (DC-8) 35.8 km (ER-2) 20 m (DC-8)
50 m (ER-2)

Hook, Myers, Thome, Fitzgerald, & Kahle (2001)

HICO 0.35–1.07 μma 128 0.238 mrad 42 kmb 83 mb Lucke, Corson, McGlothlin, Butcher, & Wood (2010)
HyspIRI 0.38–2.5 μm 2462 – 145 km 60/1000 m Devred et al. (2013)
OLCI 0.4–1.02 μm 21 – 1270 km 300/1200 m IOCCG (2014)
PACEc 0.35–0.8 nm 90 – – 1000 m PACE (2012)

a Useful range is 400–800 nm.
b Nadir resolution.
c Threshold requirements.
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opportunistic sampling conducted as part of field validation of the
remote sensing data.

3.2. Development of the Scattering Line Height (SLH) index

Hydrolight runs simulating remote sensing reflectance for
Microcystis demonstrate that a spectral shape algorithm centered on
the MASTER band at 714 nm is indicative of the presence of
cyanobacteria. As expected from studies of chlorophyll fluorescence
and scattering (i.e. Gower et al., 1999), the reflectance spectra show
that the chlorophyll fluorescence peak increases in amplitude and shifts
slightly to longer wavelengths as the backscatter ratio increases. How-
ever, a comparison of spectra for different chlorophyll concentrations
shows that while the amplitude of the fluorescence peak increases
with chlorophyll concentration, the reflectance at the peak's red shoul-
der does not change appreciably (Fig. 4). The SLH algorithm takes ad-
vantage of this property to estimate the probability of surface-forming
blooms of cyanobacteria.

Remote sensing reflectance (Fig. 5) was calculated for Pinto Lake
using both HICO and above-water reflectance measurements. The
HICO data clearly exhibit issues with atmospheric correction (e.g. nega-
tive reflectances in the blue part of the spectrum) and reduced spectral
resolution compared to the above-water measurements, but consistent
spectral shapes are evident in both datasets. Here we deliberately use
both datasets to demonstrate that spectral shape algorithms are reason-
ably robust to bad data.

Fig. 6 compares the well-described CI algorithm and our SLH algo-
rithmusing these data. For HICO, the relationship between phycocyanin
concentration and CI is weak (r2 = 0.24, p = 0.10) while SLH is much
more robust (r2 = 0.54, p = 0.01) suggesting that, for potentially
noisy data (e.g. HICO), SLH provides a reasonable alternative to CI, mak-
ing it possible to extend cyanobacterial bloom mapping to sensors that
do have bands appropriate for CI. Inclusion of the above-water data does
not significantly improve the fit for CI (r2 = 0.14, p = 0.11) and results
in a decrease for SLH (r2 = 0.40, p = 0.05), primarily due to the added
variability at low phycocyanin concentrations.

3.3. Separation of Aphanizomenon and Microcystis

In California, Aphanizomenon is generally non-toxic, although it has
been reported to produce saxitoxins and cylindrospermopsins in other
Table 3
Algorithms developed and/or applied to the spectral data from California inland water
bodies. For the AMI, nominal wavelengths from Fig. 2 are provided; the actual wave-
lengths used are chosen to correspond to the peak (dip) wavelengths of the spectra. SS
is spectral shape.

Algorithm Formulation

CI CI = −SS(681)

SS 681ð Þ ¼ Rrs681−Rrs665− Rrs709−Rrs665½ � � 681 nm−665 nmð Þ
709 nm−665 nmð Þ

SLH SLH ¼ Rrs714− Rrs654 þ Rrs754−Rrs654
754nm−654nm 714 nm−654 nmð Þ½ �

AMI AMI = peak width/dip width = [640 − 510 nm] / [652−625 nm]
locations (O'Neil et al., 2012). As noted above (see also Fig. 3),
Aphanizomenon regularly blooms prior to formation of toxicMicrocystis
events in Pinto Lake. This occurred in 2010, 2011, 2012. Dominance by
Aphanizomenon is usually followed by an overlapping (mixed) commu-
nity assemblage with Microcystis. The phytoplankton assemblage then
typically becomes dominated by Microcystis and toxin levels increase
as the blooms progress (2010–2012), although in 2013, Microcystis
failed to dominate (Fig. 3) and did not result in the the classic surface-
scum blooms that are characteristic of this organism. Temporal separa-
tion between Aphanizomenon and Microcystis is variable, ranging from
very short or as in 2013 a prolonged (months) mixture of both organ-
isms with no clear dominance by either genus.

Based on empirical observations and Hydrolight simulations, these
two cyanobacterial genera exhibit subtle differences in Rrs (Fig. 2). Spe-
cifically, blooms dominated byMicrocystis have a stronger phycocyanin
absorption feature, whichwhen coupled with the chlorophyll a absorp-
tion feature at ~680 nm results in a more pronounced peak in Rrs at ap-
proximately 655 nm (Fig. 2). This is readily apparent in above-water
spectra, and is sufficiently robust that it can be identified from the
much coarser HICO data, even with non-optimized atmospheric correc-
tion. Taking advantage of this change in spectral shape, the AMI uses the
width of the dominant reflectance peak (~565 nm) and thewidth of the
dip caused by phycocyanin absorption (~620 nm) to define a gradient
0

0.005

400 450 500 550 600 650 700 750 800

Wavelength (nm)

AMI (Peak Width / Dip Width)

Fig. 2. Example spectra for blooms of Microcystis (solid) and Aphanizomenon (dashed)
from Pinto Lake, CA collected on 13 September and 10 July 2012, respectively. Vertical
solid lines indicate the wavelengths used for the CI, vertical dashed lines indicate wave-
lengths used for SLH. The AMI is based on the ratio of the peak width at ~565 nm and
peak trough at ~620 nm.
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from Microcystis to Aphanizomenon. Low AMI values (~2) were empiri-
cally determined to be dominated byMicrocystiswhile high values (~5)
were dominated by Aphanizomenon. A caveat of this approach is that the
AMI doesn't provide useful information if there is no cyanobacterial
bloom.
bb /b = 0.003, C = 20 µg/L
bb /b =0.003, C = 10 µg/L
bb /b = 0.003, C = 5 µg/L
bb /b = 0.0150, C = 20 µg/L
bb /b = 0.0150, C = 10 µg/L
bb /b = 0.0150, C = 50 µg/L

Fig. 4. Results from the SLH algorithm derived from Hydrolight simulations of cyanobacteria, w
sitive to changes in chlorophyll. Vertical gray lines indicate MASTER bands used for SLH.
3.4. Field application of indices

Fig. 7 shows the two biomass indices, the CI and SLH, plotted versus
the corresponding microcystin concentration from the same dates for
Pinto Lake, and the AMI plotted versus microcystin concentration for
ith varying concentrations of chlorophyll and backscattering ratios. SLH is relatively insen-
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those dates. The data cluster into several groupings, including high tox-
icity but low CI or SLH, low toxicity and high CI or SLH, and the “ideal”
cluster of increasing CI (SLH) and increasing toxicity. There is a general
increase in toxicity with decreasing AMI (increasing dominance by
Microcystis).

As a demonstration of opportunistic data collection, the SLH algorithm
was applied to MASTER data collected in 2009 over Pinto Lake and Kelly
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values. Note that it is possible to have blooms of non-toxicMicrocystis and for toxin to be
present with low concentrations ofMicrocystis, since toxin concentration is influenced by
both the toxicity of the species or strain and the abundance (biomass) of those organisms.
Lake, and in 2011 over the UCSB Lagoon (Fig. 8). A gradient of SLH values
were obtained with moderately high values (N0.004 sr−1) for parts
of eachwater body. In each case, verification water samples collected
within a few days of the imagery identified the presence of both
Microcystis and low levels (~0.5 ppb) of microcystin. A similar anal-
ysis was applied to Kelly Lake using the HICO image for 26 October
2012. The CI, SLH, and AMI metrics all indicated that Kelly Lake was
likely experiencing a bloom of similar composition as Pinto Lake
(data not shown). Subsequent water sample verification of that site
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Fig. 8.MASTER datawas used to calculate SLH for Pinto Lake, Kelly Lake, and UCSB Lagoon.Warm colors indicate the probability of a cyanobacterial bloom, andwere validatedwith in situ
observations.
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again confirmed the presence of a cyanobacterial bloom dominated
by Aphanizomenon with Microcystis present.

4. Discussion

While Pinto Lake is a known “hotspot” for CyanoHABs (Kudela,
2011; Miller, Kudela, & Jessup, 2010, 2012, Miller et al., 2010),
blooms of potentially toxic cyanobacteria are not well monitored in
other California water bodies, other than the San Francisco Bay/Delta
(Lehman, Boyer, Satchwell, & Waller, 2008, Lehman et al., 2013), the
Klamath River and its reservoirs (c.f. Butler, Carlisle, Linville, &
Washburn, 2009; Fetcho, 2007), and Clear Lake (Kurobe et al., 2013).
Recent monitoring results suggest that microcystins are widespread
throughout a number of California water bodies (unpublished data).
The widespread detection of cyanobacterial toxins in California waters
led the State of California to develop more proactive monitoring and
alert efforts through the establishment of the California Cyanobacteria
Harmful Algal Bloom (CCHAB) Network in 2013. One immediate rec-
ommendation from the CCHAB Network has been to explore the use
of airborne or satellite remote sensing for detection of potentially harm-
ful cyanobacterial blooms in State waters.

Remote sensing has been used successfully in many other freshwa-
ter systems, but often relies on algorithms designed for a specific sensor
(e.g. Hunter, Tyler, Carvalho, Codd, & Maberly, 2008, 2010, Hunter,
Tyler, Willby, & Glivear, 2008; Kutser, 2009; Simis et al., 2005; Vincent
et al., 2004). Wynne et al. (2008, 2010) describe one of the most suc-
cessful operational applications of remote sensing data for tracking
CyanoHAB events. This system utilizes the CI derived fromMERIS imag-
ery to predict the onset and transport of blooms in the Laurentian Great
Lakes. One aspect of their approach is utilization of spectral shape algo-
rithms to reduce sensitivity to atmospheric correction issues.MERIS has
also proven useful in other small inland lakes (e.g. Matthews & Bernard,
2013) using similar spectral shape approaches. Unfortunately, the loss
ofMERIS precludes ongoing use of these data, andwhileMERIS Full Res-
olution (FR) provides global 300 m (nadir) resolution, this is still mar-
ginal for small water bodies such as Pinto Lake and Kelly Lake, which
would be covered by just 4 pixels integrating signals from both land
and water. This limitation led us to examine other opportunistic
datasets that could be used to identify potential cyanobacterial blooms.

4.1. Development of novel indices

MASTER is frequently flown in California, and was flown as part of
both the NASA SARP program and the HyspIRI Airborne Campaign.
Given the frequent availability of free imagery and the high spatial res-
olution, this sensor could provide a valuable record for mapping the oc-
currence of CyanoHABs in California waters. However, MASTER is
missing the 681 nm band used for the CI algorithm, and generally is
not optimized for water retrievals. Despite these limitations, we show
that alternative algorithms can be developed that work with MASTER,
potentially expanding the application of spectral shape algorithms to
other airborne and satellite sensors thatwere previously discounted be-
cause of non-optimal wavelengths for CI and similar algorithms.

Microcystis and other surface bloom-forming cyanobacteria such
as Anabaena and Aphanizomenon exhibit relatively high backscatter-
ing ratios compared to other living cells due to their small size, pres-
ence of vacuoles, and for the latter two, presence of heterocysts
(specialized cells used for nitrogen fixation) and akinetes (special-
ized resting-stage cells). The gas vesicles in Microcystis also alter its
scattering phase function compared to Microcystis cells with collapsed
gas vesicles and other non-vesicle bearing cyanobacteria genera. Specif-
ically, scattering at forward angles is decreased while scattering at
backward angles is increased (Volten et al., 1998). Thus, it is anticipated
that the backscatter ratio for Microcystis is higher than for other
cyanobacteria. This suggests that an algorithm based on the scattering
properties of cyanobacteria may be an effective alternative to the
large class of algorithms taking advantage of phycocyanin absorption.
This led to SLH. While this is clearly a limited dataset, the potential
use of SLH shows significant promise (Figs. 6, 7), and does as well or
better than CI for Pinto Lake.

A significant shortcoming of existing cyanobacterial algorithms is
that most fail to discriminate between cyanobacteria genera (Kutser,
2009). Numerous cyanobacteria are capable of producing blooms,
and may or may not possess the capability to produce a variety of
toxic compounds (c.f. O'Neil et al., 2012). AMI takes advantage of
the optical differences between Aphanizomenon and Microcystis to
provide a mechanism for classifying cyanobacteria into three clus-
ters; strongly dominated by Aphanizomenon, strongly dominated by
Microcystis, and mixed assemblages. Since only Microcystis produces
microcystins in California water bodies, this provides additional in-
formation about the probability of toxins as a function of bloom type.

Application of the AMI algorithm is ideally implemented on pixels
previously identified using either the CI or SLH algorithms as poten-
tial cyanobacterial blooms. The lack of empirical data for other
bloom-forming cyanobacteria such as Anabaena and Planktothrix is
also a potential limitation that would need to be addressed before
this approach was implemented in other water bodies. Another po-
tential failure of AMI as a predictor of toxic blooms is that extended
presence of a “mixed” bloom such as occurred in 2013 is difficult to
interpret. We note that this mixed bloom was still associated with
toxin, albeit at lower duration and concentration than 2010–2012.
Given the regular appearance of Aphanizomenon prior toMicrocystis,
followed by the (sometimes lengthy) period of mixed assemblages,
separation of these genera optically may provide the potential to de-
velop an early warning capability, with the caveat that the temporal
separation between Aphanizomenon and Microcystis is variable, and
sometimes quite short, while mixed assemblages may still contain
toxic cells.
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Using only the CI, several time periods from this study would be
flagged as potentially dangerous blooms but exhibit low toxin levels
(Fig. 7). These false positives could potentially be discriminated
using AMI, which indicates that these events were not dominated
by Microcystis. In contrast, increasing toxin concentrations were gener-
ally associated with dominance by Microcystis or mixed communities
(lower AMI), regardless of the CI or SLH value. False negatives, where
the indices suggest lack of CyanoHABs, are indicated by low or zero CI
or SLH but highmicrocystin concentrations (Fig. 7). The same data plot-
ted as AMI indicate that most of the points have some proportion of
Microcystis (AMI b 5) indicative of the potential for toxin to be present.
An issue would be that in a two-step process, failure to identify a bloom
using CI or SLH would preclude application of AMI. While the relation-
ships are somewhat noisy, the added information from AMI would be
useful for semi-operational or operational use of imagery for prioritiz-
ing water bodies for more careful evaluation using the dual criteria of
potential blooms present (CI and SLH) and then potential presence of
Microcystis (AMI). The relative insensitivity of these indices, which
rely on spectral shape, to noisy data and poor atmospheric correction
suggest that routine application to imagery collected opportunistically
or from future satellite sensors could be conducted with minimal cost
and effort.

4.2. Future applications

Cyanobacterial blooms are increasingly prevalent worldwide
(O'Neil et al., 2012; Paerl & Huisman, 2008, 2009). The tendency of
these cyanobacterial blooms to be surface-intensified clearly suggests
that remote sensing can provide a significant benefit in monitoring
and forecasting these events. In California, there is increasing concern
with the frequency and widespread prevalence of toxins in multiple
watersheds (Butler et al., 2009, 2012) as well as increasing concern
about the apparent trends in known hotspots such as the San Francisco
Bay and Delta (Lehman et al., 2013). With a few exceptions, the more
than 3000 named lakes and reservoirs in California are small, similar
in size to Pinto Lake and Kelly Lake, and are in remote or poorly moni-
tored locations. Opportunistic data collections such as SARP and the
HyspIRI Airborne Campaign provide an opportunity to collect data at
appropriately high spatial resolution over large swaths of California.
These data also provide excellent proxies for future satellite missions
such asOLCI, to be launched on Sentinel-3 by the European Space Agen-
cy, the HyspIRI, and the Pre-Aerosol Clouds and Ocean Ecosystem
(PACE) sensors to be launched by NASA.

Since CI, SLH, and AMI require a small subset of bands (Fig. 2,
Table 3), spectral requirements for application of these algorithms
are minimal. The demonstrated insensitivity to poor atmospheric
correction suggest that beyond MASTER, other commonly available
airborne platforms such as the Advanced Visible/Infrared Imaging
Spectrometer (AVIRIS), Next Generation AVIRIS (AVIRISng; Hamlin
et al., 2011), and the Portable Remote Imaging Spectrometer (PRISM;
Mouroulis et al., 2012) would all be suitable with very little additional
processing, increasing the ability to use opportunistic data collections
from both airborne and satellite platforms.

The imagery (Fig. 1 inset) from AVIRIS for Pinto Lake provides an
example of what HyspIRI would provide at 60 m resolution. The ex-
pected return rate for HyspIRI of 19 days (Devred et al., 2013) limits
applicability, particularly when non-optimal days (e.g. clouds, fog)
are factored in. While the return rate is not ideal for tracking blooms,
the bloom “season” typically lasts many weeks to months in Pinto
Lake (Fig. 3). HyspIRI imagery could be combined with other oppor-
tunistic imagery from airborne, satellite, or International Space Sta-
tion platforms to increase resolution. Taking advantage of other
sensors such as PACE and OLCI would also refine the temporal reso-
lution. Both the CI and SLH require a small subset of bands (Table 3).
OLCI has the same bands as MERIS so CI is directly applicable; OLCI
also has comparable bands for SLH (655, 709, 754 nm, versus 654,
714, 754 nm for MASTER). The AMI should be applicable to PACE
given the planned spectral range and resolution (350–800 nm,
~5 nm resolution), which is comparable to HICO (400–900 nm,
~5.7 nm resolution). OLCI also has bands that could approximate
AMI (510, 560, 620, 665 nm) but the lack of a ~650 nm band could be
problematic. With either OLCI or PACE, imagery would be limited to
large lakes and reservoirs where the ground sampling resolution is suf-
ficient for tracking those water bodies, since OLCI and PACE will have
260 × 300m and1000m (at nadir) respectively, with a possibility of in-
creased, but still less than optimal, spatial resolution (300 m) for PACE
depending on the final configuration of the sensor. In California, these
lakes and reservoirs would include large water bodies such as Clear
Lake, Lake Shasta, Lake Elsinore, and the Salton Sea.

5. Conclusions

Refinements to existing remote sensing spectral shape methods
relying on phycocyanin absorption and scattering of cyanobacteria
show promise for application to small inland water bodies. The
potential to separate genera greatly enhances the utility of these
methods for watersheds where there is clear differentiation in toxi-
genic status, such as the occurrence of non-toxic Aphanizomenon
and toxic Microcystis in central California. While the data used as
part of this analysis are limited in geographical scope and number
of validation measurements, the successful application to HICO
with minimal processing (including no optimization of the atmo-
spheric correction) is encouraging. As new sensors come online in
the next few years these methods have the potential to quickly and
easily identify potentially impacted lakes and water bodies, thus
greatly improving our ability to monitor, manage, and mitigate the
growing threat of cyanobacterial harmful algal blooms.
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